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EFFICIENT FACETS AND RATES OF CHANGE;
GEOMETRY AND ANALYSIS OF SOME PARETO-EFFICIENT
EMPIRICAL PRODUCTION POSSIBILITY SETS

by
A. Charnes
W. W. Cooper
Z.M. Huang
J. J. Rousseau

Abstract

Efficient facets for the additive model of DEA (Data
Envelopment Analysis) are obtained by a new series of linear
programming models which are used to show how rates of change of
outputs with respect to inputs, both analytically and compu-
tationally, may be determined along a given efficient facet. The
differences between single and multiple outpui cases are determined
and exemplified via a "cone direction” development.
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EFFICIENT FACETS AND RATES OF CHANGE:
GEOMETRY AND ANALYSIS OF SOME PARETO-EFFICIENT
EMPIRICAL PRODUCTION POSSIBILITY SETS

by

A. Charnes
W. W. Cooper
Z.M. Huang
J. J. Rousseau .

1. Introduction

A variety of models have now been developed within the methodology of
Data Envelopment Analysis (DEA) for evaluating the (relative) efficiency of
Decision Making Units (DMUs) which use multiple inputs to produce multiple
outputs.

Building on the engineering ratio idea of a single-input, single-output
efficiency measure, Charnes, Cooper and Rhodes (1978, 1981) generalized
this notion to multiple-input, multiple-output situations and pushed forward on
both their managerial aspects and, on the dual side of the mathematical
programs involved, to more classical notions of Paretio efficiency or optimality.
Subsequent extensions and elaborations in DEA include the "multiplicative"
models of Charnes, Cooper, Seiford and Stutz (1982, 1983), the "modified
ratio" model of Banker, Charnes and Cooper (1984), the "additive” model of
Charnes, Cooper, Golany, Seiford and Stutz (1985), and the "extended
additive” model of Charnes, Cooper, Rousseau and Semple (1987). These
works provide alternative (but related) notions of efficiency with respect to
different empirically-defined production possibility or reference sets. Section 2
and Figure 1 summarize the construction of these different reference sets.




The identification of these models, indeed the whole of DEA, as Charnes-
Cooper (1961, ch. IX) tests for Pareto-efficiency of the generators of the
empirically defined production possibility set was made by Charnes, Cooper
and Seiford (1981) and elaborated in Charnes et al (1985). They also began
investigation of (among other informatics and function properties) the efficient
facets of empirical production possibility sets as a step toward determining the
rates of change of outputs with changes in inputs or other substitutional rates
along those facets. These rates of change have important economic and
managerial implications in trade-off analysis and resource allocation.

In the present paper we extend and develop in depth the insights and
beginnings in Charnes et al (1985). Section 3 provides a theoretical basis for
identification of the efficient facets of the empirical production possibility set that
underies the additive model of DEA. The efficient facets may be obtained by
solving a new series of linear programming problems, one for each DEA
efficient observed input-output point. Section 4 then shows analytically and
computationally how rates of change of outputs with respect to inputs can be
determined along a given efficient facet. These rates of change are computed
from a linearly independent (in the inputs) subset of the facet points. They will
be different along different facets. In the single output case we always obtain
nonnegative rates of change, but with multiple outputs this is not guaranteed.
The "cone direction" development in Section 5, in either the ouput space or the
input space, show us what combinations of associated substitutions are needed
in order to obtain nonnegative rates of change. A simple two-output, two-input,
ten-DMU example is carried throughout the paper to illustrate what is involved.
Concluding remarks that are given in Section 6.




2. Empirical Production Possibility Sets

Consider the (empirical) points (xj, yj),j =1, . . . n, where the xj are (mx1)
input vectors and the yj are (sx1) output vectors. In most applications they will
be positive or nonnegative vectors. We define the 'empirical production set',

: Pg, to be the convex hull of these empirical points, that is,

n n n
PEE{(x,y):x=2xjuj,y=2yju;,\7’uj20,z Hj=1} (2.1)
]-1 ]'1 ]'1

as shown in Figure 1.

s —

The 'empirical production possibility set' Qg of Charnes et al (1985) is
defined by adding to Pk all points with inputs in Pe and outputs not greater than
some output in PE that is,

Qe={(x,y):x=X ysyforsome (X y)e Pg!} (2.2)

Thus Qe =Pg U Ain Figure 1.




The Banker, Charnes and Cooper (1984) production possibility set adds
to Qg the set

{(x,y): x2X,y=y for some (X,¥) € Qg }
is given by Qe v B in Figure 1.

The production possibility sets studied by Farrell (1957), Shephard
(1970), and Fére and Lovell (1978) are truncated cones, given by Qg UBUC in

Figure 1.

For efficient production we wish to maximize on outputs while minimizing
on inputs. Thus we set

Yk 1<k<s
)= 10" costli=1,...m fOryeQe

where the yk and x; are the kth and ith components of y and x. A Pareto-efficient
(minimum) point for g4 (x, ¥), . . . , 9s+m (X, ¥) is a point (x*, y*) € Qg such that
there is no other point (x, y) € Qg for which

o (% y)S g (X y"), k=1,...,s+m (2.3)

with at least one strict inequality. Evidently, the Pareto-efficient points of Qg are
those of Pg, hence we can restrict attention to Pg.

Charnes and Cooper (1961) showed (for general, multiple goals
functions gk(x,y) ) that (x*,y*) is Pareto-efficient if and only if (x*,y*) is an optimal
solution to the reduced, single mathematical (goal) program

s+mM

min Z gk(x'Y)
k-1

gk(x.y) Sgk(x*y"), k=1,...,s+m (2.4)
(X, y) € PE

The constraint inequalities in (2.4) for a test point (x*, y*) may be written as

y2y*, x<x*,




which are the envelopment constraints of DEA for an observed input vector x*
and corresponding output vector y*.

3. Parets-Efficient Facets of the Empirical Production
Possibility Set

As shown by the locus of points a b ¢ d in Figure 2, the Pareto-efficient
empirical production frontier is segmented into facets of efficient observed input-
output points. The rates of change of outputs with respect to inputs along these
efficient facets have important economic and managerial implicaitons for trade-
off analysis and resource allocation. Our development in Sections 4 and 5
shows how these rates of change (which will be different along different facets)
can be derived from the observed input-output points that lie on the efficient
facets.

In this section we provide a theoretical basis for determining the efficient
facets and a practical method for identifying the observed points on a facet. A
small numerical example illustrates what is involved.

Figure 2.
by
(e, B)
T T
-ax +py=9
g F —
— ““
Ll b
( a, B) !
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Let F be a facet of Pg contained in the hyperplane —aT x + BTy = 0 such that

=
—o'x+Bys<H forall (xy)ePe  (3.1)
as shown in Figure 2.

Theorem 3.1: Let the relative interior of F in the hyperplane —o.T x + BTy =0

be non-empty, and let at least one other observed point be outside F. Then F is
an efficient facet if and only if « >0, B> 0.

Proof: By our assumption on F, int (Pg) # 2.

(=): Let (X, ¥) be a relative interior point uf the facet F contained in
-l x + BTy = 0. Assume to the contrary that there exists o; <0 for some
ii=1,...m)or Br<0 forsomer(r=1,...,s)

() 30is0 forsomei.

Consider the new point (x,, y,) = (X = Ae; ¥) where e;jis a vector of zeros with a
1 in the ith position. |

Then for any A > 0 we have

X, +B Y, == K+ Ao+ B Y<—aT K+ V=6

Hence, for small A > 0 we have

(X ya) € Pe
and

“WSX =Y

with strict inequality holding for xj. This means that (X, y) is not efficient, which
implies the facet F contained in —at" x + BTy = 0 is not efficient, a contradiction.

(i) 3B,<0 forsomer

Consider the new point (x;, v;) = (X, ¥ + Ae,) where e, is a vector of zeros with a
1 in the rth position. Then for any A > 0 we have




—aTx;‘+ BTyk = -0 X+ BT7+XB,S—aT¥+BT7=9.

Hence, for small A > 0 we have

(X ¥a) € Pg
and

=X N2y

with strict inequality holding for yr. This means that (X, y) is not efficient, which
implies the facet F contained in —a¥ x + BTy = 0 is not efficient, a contradiction

(<) : Assume to the contrary that the facet F contained in —o. x + BTy = 0 with
a>0and B> 0is not an efficient facet. That is, for some given relative interior

point (%, ¥) of F, there exists another point (X, ¥) € Pe such that
X<X and ¥ 2§

with at least one strict inequality holding. But this implies
~aTR+p §>—aTX+P y =86,

which contradicts (3.1).

Q.E.D.




Now suppose that the empirical "input-output” point (xo,yo ) is an efficient
point. Consider the following linear programming problem.

min 8
-OCTXo+BTYo=e

—aTx+Bly<6, j=1,....n (39
aTe+po=1

20 B20

Figure 3

(-3, p3)

(-alTx+p Ty =9)
_ («o?x +2Ty=9)

—7  (x+p3Ty=9)

(-3, 83)

(_a2' B 2)

(~al, B 1)

Lemma 3.1: Let (e, B, 6) be a feasible solution of (3.2), and let

T K T . .
—of x+B'y =6; with a‘Te+Ble=1 and o2 0,'2 0,i=1,...,K be all the
facet hyperplanes passing through the efficient point (o , Yo) over Pe WA UB

Kk
(see Figure 3). Then there exists {Aj} with Ai>0and 2, Ai=1 such that
=




(o, B, 8) = le QIBBI:)

T

Proof: Let A ={(x,y): -a‘Tx+ B'ysei, i=1,...,K}. Since (o, B, 0)isa

feasible solution of (3.2), the hyperplane -l x + BTy =0 is a support plnae at
(Xo » Yo ) such that

—0T %o +B'yo =6 (3.3)
and

—of X + BTy < forall(x,y)e A (3.4)

First we show that there exist {A;j} with A;= 0 such that (a, B, 6) 2 A (o, B 0i),

that is,
k o
(—ay B, _e) = 21 }‘l (_al' B .-el))
| =
Assume to the contrary that the following system (3.5) has no solution.

(-o, B,-8) = 21 M (of, B' =8y, (3.5)
l.
By Farkas' theorem, there exist (d, v, f) such that
T i ,

—'d+B y-f6<0,i=1,...k (3.6)
and

—'d + BT‘Y— fe>0 (3.7)
By (3.7), (d, v, f) must be a non-zero vector.

(iYf=0

Consider (X, y) =

(%o, Yo) + (d, v). By (3.6) we have




.T iT
=0+ (' d+f v)
<0; foralli

Thatiis, (X, Y) € A. But by (3.7) we have

_ T_ T ' T
—aTX+B §=(—a X, +B Yo) +H-aTd+B 7)

=0+ (-"d+pB' )
>0

This contradicts (3.4).
(i) >0

Let %7)= (&, %). Then by (3.5) we have

T .

o R4 B yeia dep ) /E<0
Thatis, (X, ¥) € A. But by (3.7) we have

— X+ BT7= (~oTd+ BTy) /t>6
This contradicts (3.4).

(i) f< 0

for all i.

10
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Let (X, ¥) = (Xo, Yo) + (%o -Sf’-. Yo -%). Then by (3.6) we have

T T T

. H . H . .T

o X+ B F=2(-al x4 P Yo) (o d+P ) ()
5291-9i=9; forall i

Thatis, (X, y) € A. But by (3.7) we have

—a %+ B Y =2 (T xo+ B yo) +oTd+B v)/ (~f)

>2 6-6
=0

This contradicts (3.4).

Hence there exist {A;} with A; 2 0 such that
k Lo
(o, B, ©) = D, i (cd, B, 6).
w1

K T
Since aTe+p e=1ando e+P e=1, i=1,...,k

we have

T T k iT k i
1=0'e+B e=) Ao e+ Y ABe
=1 =

k T k
=2 M(OLiTe+ B‘ 9)=2}\,i
jm1 jm1

Q.E.D.

Theorem 3.2: Let (o', p*, 6*) with «* > 0 and B* > 0 be an optimal basic

solution of (3.2) (e.g., using an extreme point method, such as the simplex
method). Then —o*Tx + B*T = 6* is a hyperplane containing one efficient facet

passing through the efficient point (xo, Yo) of PE.
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Proof: By Lemma 3.1 the feasible region of (3.1) is the convex hull of the
. H . T

{{cd, B, 6)}, where —x +B'y = 8, i = 1,...,k are all the hyperplanes

containing all facets passing through (xo, Yo) .

When using an exteme point method, the optimal basic solution to (3.2) must be
one of the { (o, B, 8) }, say a’=a'>0,p* = B1 >0,and 6" =6,. By

Theorem 3.1: —a*"x + B*T = 6* is a hyperplane containing one efficient facet
passing through (Xo, Yo) -

Q.E.D.

Theorem 3.2 provides only a sufficient condition for an efficient facet.
Since we cannot guarantee o > 0 and B8* > 0, in practice we may use small
numbers € > 0 and employ the following linear programming problem to derive
the hyperplane containing one efficient facet passing through the efficient point

(X0, Yo) of PE.

Min 6

—aT X+ B Yo = (3.8)
T x+BTy; $6,j=1,...,n

aTe+p e =1

a2ee, B2 €e.

At an optimal solution (a*, B*, 6*) to (3.8), all those observed (efficient) points j
which satisfy their respective constraints as equalities also lie on the efficient
facet contained in the hyperplane passing throught (xo, Yo). Such points,
together with (xo, Yo), constitute a subset (but not necessarily all) of the facet
members. Applying (3.8) to other members of the facet will generally reveal
additional points, and there will be duplication, overapping and "resting” of
these various subsets from which the facet may be identified by reduction.

Thus, by applying (3.8) to each DEA-efficient point in turn, all efficient facets and
their member points can be identified. This procedure requires little additional
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computational effort, since moving from one efficient opint to the next involves
changing only the first constraint of (3.8) with everything else unchanged.

To illustrate the above procedures consider the following two-output, two-
input, 10-DMU example with data as given in Table 1.

Table 1.

DMU Outputs Inputs

Y1 y2 X1 X2
1 2 1 9 9
2 3 1 12 8
3 2 2 7 12
4 S 3 6 10
5 4 4 10 5
6 3 3 8 10
7 6 6 12 10
8 8 2 14 6
9 1 6 12 12
10 3 5 8 8

The Pareto-efficient points are DMUs 4, 5, 7, 8 and 10. Applying program
(3.8) to each efficient point in turn produces the results given in Table 2. By
reduction we see that there are two efficient facets: (DMU 5, DMU 8) and
(DMU 4, DMU 5, DMU 7, DMU 10). The facets, for both the outputs and the

inputs, are depicted in Figure 4.

Table 2

Program (3.8) DMUs Revealed as
Applied to DMU Being in the Facet

4 4,5

5 4,5

7 4,5,7,10

8 58

10 4,5,10




Figure 4.
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4. Determining Rates of Change

We begin this section with some definitions and lemmas important in our

subsequent development.

Definition 4.1 Let S be an arbitrary set in E™. The affine manifold spanned
q q

by S is given by M (S) = {x: x=i2‘,1 Ax, xie S, \e E1,i21 =1, q21)

Definition 4.2 Let S be an arbitrary set in EM.  The linear subspace spanned
q

by SisgivenbyL (S)={x: x= T Ax, xie S, AheE' q21)
Lemma 4.1 Let S be an arbitrary set in EM. Then for any xe S we have
M (S) = x + L (S—x)
Figure 5§

| M(S)
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Definition 4.3 Let S be an arbitrary setin EM. The convex hull of S is given

by
q q
K(S) ={x: x=i221 Aixi, xi e S,xizo,i>:1 Ai=1, q21}
Lemma 4.2 Let S = {x1, ..., xk} and Rank (x2=x1, . .., xk-x1) = p—1, and w. I.
0. . letx&x1, ..., xP-x! be linearly independent. Then
M, ..., xP)=M(x1,...,xK
Proof: SincelL (x&x1,...,xk=x1)=L (x&=x1,..., xP—x1), then by Lemma
4.1 we have
M (x1,...,xK) =xT+L (x2=x1,...,xkx)
=x1 +L (x&x1,..., xP—x1)
=M (x1,...xP)

Q.E.D.

p .
Lemma 4.3 Letf=g,—_21 xi. Then X is a relative interior point of K(x1,...xK)in
=

M (x1, ... xK).

Proof: Xis a relative interior point of K(x1, . . . xP) relative to M(x1, . . . xP). Since

M (x1,...xP)= M(x",...xK) and

K(x1,...xP) cK(x1,...xK), we have that X is a relative interior point of

K(x1,...xK)in M(x1, ... xK).

Q.E.D.
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W.l.o.g., let (x1, y1), ..., (xk, yk) be all the generators of a given efficient
facet. Let Rank (x2—x1, ..., xk=x1) = Rank (x2—x1, ..., xP=x1) = p—1, and let

EISE
Y:‘E Y x. BylLemma 4.3, X is a relative interior point of (x7, ... xX). Hence, if
i=1

we can determine the rates of change of the outputs with changes in the inputs at

X, we also have them at any point of that facet.

P ~
Let X-x'= 1—.2 (x-x")=X P

P2
and
%
y-y'= JP_EZ (y-y)=Y P
where
X=(x2=x!,..., xP=x)
Y=(y2—yl ..., yP=yY)
and §=(€5,---.%)T-
Then
X' x=x")=X' XP
=X X)X (x~x")= P
=¥y = YXT X)-1 X" (X x')
=W (x—x1)
where

W=Y XTX)-1 XT.
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For any r, we then have 7~y! = W (x-x') (4.1)
where ;W denotes the rth row of W.

Now allow a smail change 4, in the particular input ip , with all other input

values unchanged.

Let
- 1 o (ol
Xio + Aio— Xio = 2 aj (Xio—Xio)
j=2
— 1 2 i 1 . 0
—Xj = Z aj (X{—Xi ), 1 #1g
j=2
and

X (bg) = (Koo X+ Ay ..o, X)T.

Then we have

x (4;) = =§', o (X=x') = X o

ju2
and
1 s iyl
y (&) -y =sz o (y=y') =Y o
where

a=(0p ..., o)




Then

and

Now,

Thus, we have

a = (XX X" (x (8) - x")

y (a)-y! = Y(XTX) X7 (x (&) - x1)

=W (x (A,) = x).

Yr (Aio)—yr _ (Yr (Aio) _YJ )- (_r_yg)

Xio ()= %, A

lo

_ W x (@) =x")-F-y)
A

lo

W (X = x') + Wi & = (V—y])

A

= Wy, (by(4.1)).

N _ pm Yr(4)-¥r
BXio Aio -0 xio (Aio)- Yio

= Wr o

19

(4.2)
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If Rank (x2—x1, ..., xk=x1) < m, then for some iy X + Ae;, will no longer lie
on the facet for sufficiently small A > 0. Therefore, we need to project €;, to the
subspace L (x2—x1,..., xP=x1) and then obtain the rate of change along this

projected direction. (See Figure 5)

LetP = X (XTX)-1 X T, so that P is a projection operator from th2 space

EM to the subspace L (x2—=x1, ..., xP—x1).
Let
lo = ”—izi"—“, where €, has a 1 in the io!" position and zeros elsewhere. Then
io
we have
dy (x+pd®) | _ g e
—dp— p=0-rWd,r_1,...,s,|°...1,...,m (4.3)
Note that if Rank (x2—x1, ..., xk=x1) = m, then P is the (m x m) identity matrix.

Continuing with our illustrative example of the previous section, recall the
two efficient facets were (5, 8) and (4, 5, 7, 10). We shall now determine the rates

of change for these facets.
Efficient Facet (5, 8):
5= 10 | x8=| 14 ={4]y8=]8
X (5 ),x X )y"’ (4).)/ (2).sothat

x8 = x5 =( ? )and y8—y® = ( _42 ). Since x8 - x5 # 0 it is linearly independent.
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Figure 6.
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Thus

=(4 =( 4 TxX)1=1
X (1)andY (_2)and(X X) T

Therefore

= Txyrx'-2( 8 2
w=Y X XM X 17(_4 _1)

P=X(XTX)"XT='1—( 16 4 )
17 1

q' Pe, o (8)

"I Pey|| V272 |2
=P __ 1 (4)
|| Pesf] vI7 \1 )

The rates of change are given by

dy; (Y+Pd1) 1 _ {272
o URSATRA U =1Wd = = (.97
dp p=0"" g 17 0

dy, (X+pd?)

5 lp'o=1Wd2 =-1v4_?=o.97

dy, (X+pd') : 8
—_— =oWd' =- ~=0.49
dp p=0 V272

dy, (R+pd?) 2 2
i Al S =Wd® = ——&—=-0.49
dp el 17

Note that the last two rates of change are negative; we will address this situation

in Section 5.
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Efficient Facet (4, 5, 7, 10):

x4=( fo )’Xs=( v )’x7=( 16 ,x1°=(g)

AR IR e H

5 — x4 = ( )x7—x4=(8),x1°—x4=(_22 )and
=3 py-ve(g)yeove( 2 )

It is easily verified that x5-x4 and x7-x4 are linearly independent.

Hence
[ 4 5 _[ -1 1
X’(—s 0 )’Y'( 1 3 )
and
-2
Tyyv-1=| 25" 75
e 2 41
75’ 900
Therefore
11
W=YX'Xr1 X =[6 3
X'X)y 11
2’5
and

P=XXXrX"=I,,
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Thus the rates of change in this facet are given by

5. Cone Directions for Non-negative Rates of Change

The rate of change of output y, with respect to input x;, as given by (4.3), is
not guaranteed to be non-negative. When negative rates of change are given by

(4.3) we may employ the following development.

Note first that the "projections" of the outputs of y1, . . ., yK along the
direction h > O are given by the single outputs §' =h'y', ..., ¥ =h'yk. Now
consider the following two DEA problems (5.1) and (5.2). They have the same
input data, but the outputs of (5.2) are the projections (along the direction h) of the

outputs of (5.1), and (x°, y°) is one observed pointin {(x!, y1),..., (x1, y" }.
min —eTs* —eTs~
ylhj~-st =y°
“IXdy-st = | (5.1)
N =1

N' st,s 20
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min —h's* —eTs"

Thlyil-h'st  =h'y

“INy -sT = (5.2)
A =1
A, st s” 20

If h > 0 then from (5.1) and (5.2) we have that (x°, y9) is efficient if and only

if (x0, hTyo) is efficient, that is, (x0,§°) is efficient.
Now let
Yy =@-9.....97-9")
=(h" (y2-y"), ..., hT (yP-y")
=h' (y2-y!, ..., yP-y!)
=hTY
and
W, =Y, (X' X1 X

=hTY (X'X)1X'

=hT W
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We then have

dy (x+pd)

T p=0=W,,d‘=hTWd‘, i=1,...,m (5.3)

Thus, if in (4.3) there exist some r and i such that (Wdi < 0, we need to find
a direction h > 0 such that
Wdi20, i=1,...,m (5.4)

Case (i): If (5.4) has at least one positive solution, then it is in the cone of

directions which contains nonnegative rates of change on this efficient facet.

Case (ii): (5.4) has no positive solution and Rank (x2—x1, . .., xk=x1) < m.

The hyperplane —y"" x + B'T y = @ which contains the efficient facet has been

determined by the linear programming problem (3.8). Now set some suitable
input vector x* such that x2-x1, . .., xP-x1, x"=x1 are linearly independent, and

determine the corresponding efficient output vector y* by solving
QT »

~o X+ B y = 6. Wethus have a new efficient point (x*, y*) and an extended

efficient facet. The corresponding new X" Y, W* and P* are given by
X = (x2=x1, ..., xP=x1, x'=x1)
Y = (y21, L, yP=yt, y'=y D)
W=y X" X)y1x7

P=X(X"X)»1X"




27

—— where ejis a vector of zeros with a 1 in the ith position.

Then by (4.3) we have

- i X
dy, (x+pd) =Wd,r=1,...,8i=1,...,m (5.5)

If the rates of change given by (5.5) are still negative, the above procedure
is repeated, further extending the efficient facet one point at a time. The process

stops after at most m+ 1—p iterations.
Case (jii): (5.4) has no positive solution and Rank ( x2=x1, ..., xk-x1)= m.

In this case we can determine directions in the inputs such that the rates of

change of outputs with respect to inputs are nonnegative.
We need to find a direction d which lies on the subspace

L (x2=x1, ..., xk=x1) such that

dig?;—pd) p_0=rWd20, forallr=1,...,s.
Since d lies on L ( x2=x1, ..., x*=x1), d has the representation

d=Pz, forsomezeE™.
This means we must have

r WPz 20, forallr=1,...,s
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WPz 20.
Then for any direction d in the cone A given by

A = {d: d=Pz, WPz20} (5.6)

we have the rate of change

dy, (X+pd) =Wd20, forallr=1,...,s. (5.7)

Wd 20 (5.8)

Recall that for the efficient facet (5, 8) of our illustrative example, the rate of
change of the second outpuf with respect to each input was negative. To derive

nonnegative rates of change along this facet we need to determine a direction

h = h1)> 0 such that
hy

hTWdi20, i=1,2

Thus we have

dy (X+pd') Toural
) ek L =h'Wd'=—4 _ (68h,-34h,) > 0
dp  |e=0 e Comodhd
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dy (x+pd?)

s oo™ h'Wd? = —2 (34 hy=17hy) 2 0

17Y17

which imply that such a direction must be in the cone
2 hy 2 ha.

We conclude this section by highlighting the distinction between the
single-output and the multiple-output cases. Charnes et al (1985) showed that if
a Pareto-efficient empirical production function has only a single output, then it is
an isotone function. Hence, if Rank ( x2=x1, . . ., xk=x1) = m, we can always
obtain nonnegative rates of change. If Rank ( x2—x1, ..., xk-x1) < m, we can
extend the facet by the procedure given for case (ii) above, and thus will be
quaranteed nonnegative rates of change. In contrast, as has been shown in this

paper, the multiple output case is considerably more complex.
6. Conclusion

The present paper has extended the existing theory of Data Envelopment
Analysis to develop what rates of change of outputs with changes in inputs can
be determined on the Pareto-efficient facets of an empirically defined production
possibility set. These rates of change, which will be different on different facets,
are important for effective management of the resources (inputs) employed to

obtain desired feasible outputs.

The efficient facets can be obtained by solving a series of linear
programming problems, one for each Pareto-efficient observed input-output point.
It is shown that the rates of change can then be computed from any linearly

independent (in the inputs) subset of the facet's points. For the single output case
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we always obtain nonnegative rates of change. The multiple output case is more
complex, and nonnegativity is not guaranteed. However, the "cone direction”
development of Section 5, in the output space or in the input space, shows in
what directions change must go to obtain nonnegative rates of change. A simple
example was developed and carried throughout the paper to provide a clearer
understanding of the geometry of the empirical Pareto-efficient functions as well

as to clarify the steps in our procedures.

| PO b
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